Alpha Decay

Energetics of the Alpha Decay

Alpha decay is the spontaneous emission of an α -particle, namely the ${}_{2}^{4}He$ nucleus. The process can be described by the following formula:

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + \alpha$$

and appears in very few light nuclides and mostly in heavy nuclides.

The energy release in an α -emission can be calculated using the above equation:

$$Q = [m_N({}_{Z}^{A}X) - m_N({}_{Z-2}^{A-4}Y) - m_{\alpha}]c^2$$

where m_N represents the mass of the nucleus. Since it's more convenient to deal with atomic masses, we can rewrite the above equation as:

$$Q = [m_N({}_{Z}^{A}X) - m_N({}_{Z-2}^{A-4}Y) - m({}_{2}^{4}He)]c^2$$

where the electron masses are properly accounted for and the electronic binding energy has been ignored. This also assumes that the transitions are "between nuclear ground states."

If Q < 0 the process is endothermic and cannot occur spontaneously

If Q > 0 the process is exothermic and can occur spontaneously

In the latter case the energy is given up to the α -particle and the daughter nucleus in the form of kinetic energy.

Calculating Q using nuclear data:

$$Q = -[B({}_{Z}^{A}X) - B({}_{Z-2}^{A-4}Y) - B({}_{2}^{4}He)]$$

where the binding energy of ${}_{2}^{4}He$ is known to be 28.3 MeV. Alpha emission is energetically favorably while the emission of other light nuclei from a heavy nucleus is rather unlikely. This is because the binding energy of ${}_{2}^{4}He$ is anomalously large.

Table 8.1 Energy, *Q*, Associated with the Emission of Various Particles form a ²³⁵U Nucleus

	Emitted Particle	Q (MeV)	
	n	-5.30	
· ~.	p	-6.70	
	^{2}H	-9.71	
	^{3}H	-9.97	
	³ He	-9.46	
	⁴He	+4.68	
	⁶ Li	-3.85	
	⁷ Li	-2.88	
	⁷ Be	-3.79	

For A less than about 150 the α -decay process is endothermic and does not occur; for A greater than ~150 the process becomes exothermic and can, in principle occur with a Q value that generally increases with increasing A.

One of the key pieces of experimental information resulting from α -decays is measuring their kinetic energies. The Q value is split between (not equally) the α -particle and the daughter nucleus. Using conservation of momentum and energy, one can derive the following equation for the kinetic energy:

$$T_{\alpha} = \frac{Q}{1 + \frac{m_{\alpha}}{m_{D}}}$$

where m_D is the mass of the daughter nucleus. The energy recoil of the daughter nucleus accounts for about 2% of the total energy.

Geiger-Nuttall Relationship

The Geiger-Nuttall rule states that there is a dramtic decrease in the α -decay lifetime with increasing decay energy. This is shown in the following figure.

Figure 8.2 Geiger-Nuttall Relationship Between the α -Decay Halflife and the Decay Energy for Some Even Z Nuclei

Each line represents data for a different value of Z as indicated by the element name.

Note:
$$^{232}_{90}Th \ (\tau = 6 \times 10^{17} \ s)$$
 and $^{218}_{90}Th \ (\tau = 1.4 \times 10^{-7} \ s)$

Theory of α-Decay

The basic theory of α -decay investigates the probability that two neutrons and two protons will become bound together within a nucleus, thereby creating an α -particle.

The lifetime for α -decay will then be given in terms of the:

- 1. time scale for α -particle formation within the nucleus, τ_0 , and
- 2. the probability that the α -decay having been formed will escape from the nucleus, P.

$$\tau = \frac{\tau_0}{P}$$

Figure 8.3 Potential Well for the α -Decay Model

Discussion of the Escape Probability

$$a = R_D + R_\alpha$$
 $V(r) = \frac{2Z_D e^2}{4\pi\varepsilon_0 r}$

We can define two regions outside the nucleus:

where

$$b = \frac{2Z_D e^2}{4\pi\varepsilon_o Q}$$

Figure 8.4 Tunneling of an α -Particle Wave Function Through a Square Barrier

Probability

$$G = \frac{4Z_D e^2}{4\pi\varepsilon_o} \sqrt{\frac{2m}{\hbar^2 Q}} \left[\cos^{-1} \sqrt{\frac{a}{b}} - \sqrt{\frac{a}{b} \left(1 - \frac{a}{b}\right)} \right]$$

where m is the reduced mass of the α and the daughter nucleus.

The time scale τ_o depends on two factors. The first factor depends on the details of the processes that cause the formation of the α -particle within the nucleus. The second factor can be viewed classically as the time-interval between collisions of the α -particle off the nuclear potential well, and this is related to the velocity of the α -particle (which is related to the Q for the decay and the radius of the nucleus).

We don't expect that τ_o will be substantially different in nuclei with similar mass and similar nucleon configurations, so, we will assume that τ_o is a constant and write:

$$\tau = \frac{\tau_o}{e^{-G}}$$

Table 8.2Measured and Calculated α -Decay Lifetimes for Some
Heavy Nuclei

Parent	Daughter	Q(MeV)	$ au_{ m meas}({ m s})$	$ au_{\rm calc}({ m s})$
²³⁸ U	²³⁴ Th	4.27	2.0×10^{17}	3.0×10^{17}
²³⁴ U	²³⁰ Th	4.86	1.1×10^{13}	1.0×10^{13}
²³⁰ Th	²²⁶ Ra	4.77	3.5×10^{12}	3.5×10^{12}
²²⁶ Ra	²²² Rn	4.87	7.4×10^{10}	6.6×10^{10}
²²² Rn	²¹⁸ Po	5.59	4.8×10^{5}	3.8×10^{5}
²¹⁸ Po	²¹⁴ Pb	6.11	2.6×10^2	1.4×10^{2}
²¹⁴ Po	²¹⁰ Pb	7.84	2.3×10^{-4}	1.0×10^{-4}
²¹⁰ Po	²⁰⁶ Pb	5.41	1.7×10^7	5.2×10^{5}

The calculated lifetimes have been normalized to $^{230}_{90}Th$.

In summary:

- 1. The calculated lifetimes are \sim consistent with the measured lifetimes. $\tau_o = 6.3 \times 10^{-23} \ s$. This is determined from the $^{230}_{90}Th$ lifetime.
- 2. Provides a quantitative basis for the Geiger-Nutall rule.
- 3. When the α -emission is from an even-even nucleus, it is preferentially to the ground state of the daughter nucleus.