Alpha Decay #### **Energetics of the Alpha Decay** Alpha decay is the spontaneous emission of an α -particle, namely the ${}_{2}^{4}He$ nucleus. The process can be described by the following formula: $${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + \alpha$$ and appears in very few light nuclides and mostly in heavy nuclides. The energy release in an α -emission can be calculated using the above equation: $$Q = [m_N({}_{Z}^{A}X) - m_N({}_{Z-2}^{A-4}Y) - m_{\alpha}]c^2$$ where m_N represents the mass of the nucleus. Since it's more convenient to deal with atomic masses, we can rewrite the above equation as: $$Q = [m_N({}_{Z}^{A}X) - m_N({}_{Z-2}^{A-4}Y) - m({}_{2}^{4}He)]c^2$$ where the electron masses are properly accounted for and the electronic binding energy has been ignored. This also assumes that the transitions are "between nuclear ground states." If Q < 0 the process is endothermic and cannot occur spontaneously If Q > 0 the process is exothermic and can occur spontaneously In the latter case the energy is given up to the α -particle and the daughter nucleus in the form of kinetic energy. ### Calculating Q using nuclear data: $$Q = -[B({}_{Z}^{A}X) - B({}_{Z-2}^{A-4}Y) - B({}_{2}^{4}He)]$$ where the binding energy of ${}_{2}^{4}He$ is known to be 28.3 MeV. Alpha emission is energetically favorably while the emission of other light nuclei from a heavy nucleus is rather unlikely. This is because the binding energy of ${}_{2}^{4}He$ is anomalously large. **Table 8.1** Energy, *Q*, Associated with the Emission of Various Particles form a ²³⁵U Nucleus | | Emitted Particle | Q (MeV) | | |------|-------------------------|---------|--| | | n | -5.30 | | | · ~. | p | -6.70 | | | | ^{2}H | -9.71 | | | | ^{3}H | -9.97 | | | | ³ He | -9.46 | | | | ⁴He | +4.68 | | | | ⁶ Li | -3.85 | | | | ⁷ Li | -2.88 | | | | ⁷ Be | -3.79 | | For A less than about 150 the α -decay process is endothermic and does not occur; for A greater than ~150 the process becomes exothermic and can, in principle occur with a Q value that generally increases with increasing A. One of the key pieces of experimental information resulting from α -decays is measuring their kinetic energies. The Q value is split between (not equally) the α -particle and the daughter nucleus. Using conservation of momentum and energy, one can derive the following equation for the kinetic energy: $$T_{\alpha} = \frac{Q}{1 + \frac{m_{\alpha}}{m_{D}}}$$ where m_D is the mass of the daughter nucleus. The energy recoil of the daughter nucleus accounts for about 2% of the total energy. #### **Geiger-Nuttall Relationship** The Geiger-Nuttall rule states that there is a dramtic decrease in the α -decay lifetime with increasing decay energy. This is shown in the following figure. **Figure 8.2** Geiger-Nuttall Relationship Between the α -Decay Halflife and the Decay Energy for Some Even Z Nuclei Each line represents data for a different value of Z as indicated by the element name. **Note:** $$^{232}_{90}Th \ (\tau = 6 \times 10^{17} \ s)$$ and $^{218}_{90}Th \ (\tau = 1.4 \times 10^{-7} \ s)$ ## Theory of α-Decay The basic theory of α -decay investigates the probability that two neutrons and two protons will become bound together within a nucleus, thereby creating an α -particle. ## The lifetime for α -decay will then be given in terms of the: - 1. time scale for α -particle formation within the nucleus, τ_0 , and - 2. the probability that the α -decay having been formed will escape from the nucleus, P. $$\tau = \frac{\tau_0}{P}$$ **Figure 8.3** Potential Well for the α -Decay Model ## **Discussion of the Escape Probability** $$a = R_D + R_\alpha$$ $V(r) = \frac{2Z_D e^2}{4\pi\varepsilon_0 r}$ We can define two regions outside the nucleus: where $$b = \frac{2Z_D e^2}{4\pi\varepsilon_o Q}$$ **Figure 8.4** Tunneling of an α -Particle Wave Function Through a Square Barrier Probability $$G = \frac{4Z_D e^2}{4\pi\varepsilon_o} \sqrt{\frac{2m}{\hbar^2 Q}} \left[\cos^{-1} \sqrt{\frac{a}{b}} - \sqrt{\frac{a}{b} \left(1 - \frac{a}{b}\right)} \right]$$ where m is the reduced mass of the α and the daughter nucleus. The time scale τ_o depends on two factors. The first factor depends on the details of the processes that cause the formation of the α -particle within the nucleus. The second factor can be viewed classically as the time-interval between collisions of the α -particle off the nuclear potential well, and this is related to the velocity of the α -particle (which is related to the Q for the decay and the radius of the nucleus). We don't expect that τ_o will be substantially different in nuclei with similar mass and similar nucleon configurations, so, we will assume that τ_o is a constant and write: $$\tau = \frac{\tau_o}{e^{-G}}$$ Table 8.2Measured and Calculated α -Decay Lifetimes for Some
Heavy Nuclei | Parent | Daughter | Q(MeV) | $ au_{ m meas}({ m s})$ | $ au_{\rm calc}({ m s})$ | |-------------------|-------------------|--------|-------------------------|--------------------------| | ²³⁸ U | ²³⁴ Th | 4.27 | 2.0×10^{17} | 3.0×10^{17} | | ²³⁴ U | ²³⁰ Th | 4.86 | 1.1×10^{13} | 1.0×10^{13} | | ²³⁰ Th | ²²⁶ Ra | 4.77 | 3.5×10^{12} | 3.5×10^{12} | | ²²⁶ Ra | ²²² Rn | 4.87 | 7.4×10^{10} | 6.6×10^{10} | | ²²² Rn | ²¹⁸ Po | 5.59 | 4.8×10^{5} | 3.8×10^{5} | | ²¹⁸ Po | ²¹⁴ Pb | 6.11 | 2.6×10^2 | 1.4×10^{2} | | ²¹⁴ Po | ²¹⁰ Pb | 7.84 | 2.3×10^{-4} | 1.0×10^{-4} | | ²¹⁰ Po | ²⁰⁶ Pb | 5.41 | 1.7×10^7 | 5.2×10^{5} | The calculated lifetimes have been normalized to $^{230}_{90}Th$. #### In summary: - 1. The calculated lifetimes are \sim consistent with the measured lifetimes. $\tau_o = 6.3 \times 10^{-23} \ s$. This is determined from the $^{230}_{90}Th$ lifetime. - 2. Provides a quantitative basis for the Geiger-Nutall rule. - 3. When the α -emission is from an even-even nucleus, it is preferentially to the ground state of the daughter nucleus.